用于低温NO₂传感的介孔WO₃纳米纤维的 孔隙率和氧空位工程

- 2020 X 物理实验报告(第一组)
- 组长: 41706251 黄灵燕
- 组员: 41706217 盛安慧
 - 41706218 贾子妍
 - 41706223 张 粤
 - 41706228 李雯娜
 - 41706232 丁雪儿
 - 41706264 张紫杉
 - 41706268 孙伊兰

报告撰写:黄灵燕,孙伊兰,张紫杉,张粤,盛安慧,贾子妍,李雯 娜,丁雪儿

- 1 摘要引言:黄灵燕,李雯娜
- 2实验:盛安慧,张粤
- 3结果讨论:孙伊兰,贾子妍,丁雪儿
- 4 气敏机理与总结:黄灵燕,张紫杉
- PPT 制作: 黄灵燕, 张粤, 丁雪儿
- PPT 展示: 黄灵燕, 孙伊兰

【摘要】本文开发了一种简便的静电纺丝技术,结合了不同的加热 速率,以调节介孔 WO₃纳米纤维的孔隙率和氧空位。WO₃的孔隙率 随加热速率的增加而逐渐增加,直至加热速率大于 10℃/min 后由于 破坏了 WO₃纤维状结构,孔隙率逐渐降低。因此,在制备的几种样 品中加热速度为 10℃/min 的 WO₃纳米纤维(WO₃-10)表现出最大 的孔径和最大的表面积。同时,随着加热速率的增加,有机聚合物在 较高的加热速率下快速分解时,由于局部较低的氧分压,氧空位浓度 明显增加。因此,WO₃ 的低温 NO₂ 气敏性能由加热速率调节,具有 最佳的传感性能的是 WO₃-10 纳米纤维,它在 90℃下对 3 ppm NO₂ 的响应最高,为 101.3,响应时间(125 s)/恢复时间(231 s)最短。 这些优异的传感特性是由于 WO₃-10 纳米纤维的高孔隙率,高氧空位 浓度和高表面积,因此它的气体扩散系数高,并且对表面物质和 NO₂

关键词: WO3 纳米纤维 介孔 氧空位 气体传感器

1 简介

在过去的数十年中,不同种类的传感材料已广泛用于各种类型的传感器领域。^[1-5]对于电阻式气体传感材料,半导体金属氧化物(SMO)包括 SnO₂,^[6,7] TiO₂, ^[8,9] ZnO,^[10,11] In₂O₃,^[12,13] 和 WO₃,^[14-17]因其成本低、合成简单和热稳定性好 而被称为最受欢迎的材料。基于 SMO 的气体传感器也被广泛应用于 NO₂ 的检测 ^[18-20]。作为一种重要的 n 型 SMO, WO₃ 由于其带隙大,出色的电子迁移率和无毒性^[15.16]等特点而被广泛认为是气体传感应用中最有潜力的候选物之一。近年来,WO₃ 在检测 NO₂方面展现了巨大潜力。^[14-16]作为一种常见的大气污染物,NO₂ 会造成严重的环境问题,^[19]如酸雨和大气污染等。并且即使是 1ppm 的较低浓度的 NO₂,也会损害人体健康。^[20,21]因此,能够快速、灵敏地检测 NO₂ 尤为重要,这就需要使用可靠的气体传感器。

通过构造 WO₃ 纳米结构的各种形态,例如纳米片,^[16]纳米球,^[22]一维纳米 棒,^[23]纳米管^[14]可以改善 WO₃ 传感器的气敏性能。掺杂,^[15]贵金属改性,^[15,22] 和基于 WO₃ 的异质结的构造^[14,24]也已得到开发,用以改善 WO₃ 的气敏特性。例 如, Shen 等人利用贵金属 Au 对 WO₃ 纳米微球进行改性,并发现经过 Au 改性的 WO₃ 纳米微球在 50℃时对 NO₂ 的气敏响应明显增强。^[15]Shendage 等制备出了 WO₃ 纳米盘,该纳米盘在 100℃下对 NO₂ 有优异响应。^[16]但是,大多数以前的 研究更加关注基于 WO₃ 的材料的形貌、组成和异质结,而不是详细的结构和缺 陷。孔隙率、孔径和表面缺陷对 WO₃ 气敏性能的一些重要影响,尚未得到满意 的解决。^[25]

通常,大孔是尺寸约为微米的次级粒子之间的孔隙,而介孔是初级颗粒之间 的孔,尺寸约为纳米(<50 nm)。^[26]氧气和测试气体可以通过大孔(分子扩散) 和介孔(努森扩散)扩散。^[25]SMO表面的气敏反应取决于活性氧和测试气体的 吸附。^[27,28]因此,高孔隙率和大孔径对于增强介孔纳米材料的气敏性能至关重要。 ^[29,30]Choi等人为气体能渗透到整个传感层提供了有效的途径。他们通过球形聚苯 乙烯(PS)胶体模板路线制备了具有球形孔的WO₃纳米纤维,该纤维具有显着 增强的H₂S响应。^[31]Kim等人也做了相关研究。通过双牺牲模板,包括球形 PS 胶体和多壁碳纳米管(MWCNT),制备了多孔的WO₃纳米纤维,它们具有分 层互连的孔隙率,显示出出色的丙酮响应。^[32]然而,很少有没有模板的原始WO₃ 的孔隙率调节的报道。为了充分阐明WO₃的孔隙率与气敏特性之间的关系,还 需要进行更多的研究,这可能为进一步设计新型的多孔传感材料提供基础指导。

近年来,人们认为在SMO中引入表面缺陷有利于增强SMO的气敏特性。^[33-35] 众所周知,氧空位对SMO的电子状态和物理特性有很大的影响。^[36] Peng等通过一种简便的一步自催化方法制备了具有可控氧空位的ZnFe2O4,发现富氧空位

的 ZnFe₂O₄ 具有优异的丙酮气敏性能。^[33] Kim 等人也进行了相关研究。他们通 过 H₂O₂ 处理并制备了具有丰富氧空位的 ZnO 纳米棒/薄膜,该薄膜具有优异的 乙醇气敏性能。^[35] Zhang 等水热法合成了不同氧空位的 CeO₂ /石墨烯复合材料, 说明氧空位增强了对 NO₂ 的气敏性能。^[29] 如上所述,可以通过增加孔隙率或氧 空位来提高 SMO 的气敏性能。但是,很少有报道孔隙率和氧空位对 SMO 气敏 性能的协同效应,特别是对 NO₂ 气敏性能的影响。

本文通过简便的电纺丝结合煅烧技术制造了具有不同孔隙率和氧空位浓度 的一维介孔 WO3纳米纤维。研究了 WO3纳米纤维的孔隙率、孔径、氧空位以及 氧种类的吸收能力,以调节 WO3纳米纤维的低温 NO2气敏特性。特别地,WO3-10 纳米纤维具有最高的介孔密度、最大的孔径和最大的表面积,这促进了 NO2分 子在整个传感层中的扩散和渗透。同时,多晶 WO3-10 纳米纤维也表现出丰富的 氧空位。因此,具有这些特性的 WO3-10 纳米纤维在 90℃ 时表现出最快和最高 的 NO2 感应响应。本文也讨论了孔隙率和氧空位对 WO3 纳米纤维的低温 NO2 气 敏性能的影响。本文所做工作的新颖性和优势性主要体现在以下几个方面: 1) 与以前曾报道过的模板法不同,本文开发了一种简单的方法,通过调节加热速率 参数调节 WO3纳米纤维的孔隙率和氧空位,这种方法也可以拓展用于构建具有 可调孔隙率和氧空位的其他氧化物纳米纤维。2)研究发现通过调节加热速率也 可以调节吸附氧的种类,而吸附氧种类是影响材料 NO2 气敏性能的一个关键因 素。3)揭露了低温下 WO₃纳米纤维的孔隙率、氧空位以及表面积之间的协同效 应。4)我们的工作提出了一个制备富含孔隙率、氧空位的氧化物纳米纤维的简 单而有吸引力的策略,合成的纳米纤维在低温下检测气体时显示出快速灵敏的气 敏特性。

(摘要+简介: 黄灵燕 李雯娜)

2 实验

2.1 实验试剂

聚乙烯吡咯烷酮 (PVP, Mw = 1 300 000)、氧化铵钨水合物 (AMH, [(NH4)6H2W12O40 • xH2O]), 分别从 Alfa Aesar 和 Aladdin 中购买。所有试剂 均未进一步纯化。

2.2 介孔 WO3 纳米纤维的合成

采用静电纺丝法合成一维介孔 WO3 纳米纤维。将 0.49 g AMH 和 1.00 g PVP 混合在去离子水中制备前驱体溶液。先在 95℃下对上述溶液进行磁力搅拌 6 h, 然后在室温下连续搅拌过夜,得到聚合溶胶。在 15%的湿度、50℃下用注射器以 0.8 mL/h 的给料流量进行静电纺丝,采集距离为 15 cm,采集高压为 20 kV。将 静电纺丝得到的铝箔收集器上的初始纳米纤维前体在 60℃下干燥 4 h。最后,将 纳米纤维前体在 550 ℃下退火 2 h,分解有机组分,得到 WO₃ 纳米纤维。加热 速率在多孔 WO₃ 纳米纤维的形成过程中起着关键作用,在这一步把加热的速度 分别设定为 1,5,10 以及 15 ℃/min,分别得到不同孔隙率的 WO₃ 纳米纤维。所 得产物依次记为 WO₃-1、WO₃-5、WO₃-10、WO₃-15。

2.3 材料表征

采用 x 射线衍射(XRD: D8 Advance, Bruker, Germany), Cu-K (arc1)辐射(^λ =1.5406 Å)对合成样品的晶相进行表征。采用同步热分析仪(Netzsch, STA 449 F5, Germany)对纳米纤维前体进行空气环境下的热重分析(TGA)和差示扫描量热 (DSC)测试。通过场发射扫描电子显微镜(FE-SEM: Nova NanoSEM450, FEI)和场 发射透射电子显微镜(FE-TEM: Tecnai G2 F20)分析产物的形貌和微观结构。用 x 射线光电子能谱(XPS: VG Scientific, UK)检测产物的表面成分和化学状态。通过 氮吸附分析仪(ASAP 2020, Micromeritics, USA)评估产物的比表面积和孔隙率。用 瞬态稳态荧光光谱仪(Edinburgh FLS9, UK)和一个He - Cd 激光(325 nm)测量产物 的光致发光(PL)光谱。

2.4 传感器的制造和测量

将合成的 WO₃-1、WO₃-5、WO₃-10、WO₃-15 试样单独与乙醇混合得到浆体。 然后,将浆液涂覆在 Ag - Pd 电极上(间距约 200 µm),得到一层活性薄膜(面积 约 7×7 mm2,厚度约 100 µm)。在进行气敏性能测量之前,构建的传感器需要 在 200℃的空气中老化 2 小时。

传感测量是在 CGS-4TPs 智能气体传感分析系统(北京精英科技有限公司)上 进行的。四个传感器同时放置在一个测试室(1.8 L)中,每个传感器使用两个探针 安装到位。用与计算机相接的数字源表测量传感器的电阻。传感器的温度由外部 温度控制器控制。测试气体通过一个微型注射器注入测试室。当传感器响应稳定 后,打开测试室,将传感器暴露在空气中。试验室内的湿度约为45%。传感器的 响应以公式 S = Rg/Ra 计算,其中 Ra 和 Rg 分别为暴露于测试气体前后的传感 器电阻。

图 S1: 银-钯电极片与气敏性能测试平台

Fig. S1. The schematic diagram of the Ag–Pd sensing electrode and sensing testing platform.

2.5 计算

理论计算采用软件包(VASP)梯度逼近 PBE 泛函,截止能量为 400eV,在 3 × 3 × 1 的 Monkhorst-Pack k 点网格上进行布里渊区积分,通过 20 Å的真空空间 将平板分开。气体分子对 WO₃ 的吸附能(E_{ads})由下式估算:

$$E_{ads} = E_{WO_3 + gas} - E_{WO_3} - E_{gas}$$

其中, E_{WO3+gas}, E_{WO3}, 和 E_{gas}分别为吸附在 WO3上的气体分子、WO3和测

(实验: 盛安慧 张粤)

3 结果与讨论

图 1(a)显示了不同升温速率下 WO₃ 试样的 XRD 图谱,分析了其相结构和纯度。所有 WO₃样品的 XRD 图谱相似,匹配单斜晶系度很高(JCPDS, no.43-1035)。 各试样的主要衍射峰在 23.12°, 23.59°, 24.38°, 26.59°, 28.94°, 33.27°, 34.16°, 35.67°, 41.91°, 47.26°、48.25、49.95°和 55.96°处,分别对应(002),(020), (200),(120),(112),(022),(202),(122),(222),(004), (040),(140)和(420)晶面。强且尖的峰表明制备的 WO₃具有较高的结晶 度。没有发现额外的杂质相衍射峰,表明获得的 WO₃样品纯度高。此外,根据 Scherrer 方程计算的 WO₃-1、WO₃-5、WO₃-10 和 WO₃-15 的晶粒尺寸分别为 26.5、 20.9、16.8 和 16.1nm[图 1 (b)],这表明随着升温速率的增加,WO₃样品的晶粒 尺寸减小。

图 1.(a)XDR 图谱 (b)计算得到的不同升温速率下 WO3样品的粒径分布

Fig. 1. (a) XRD patterns and (b) calculated size distributions of WO₃ samples at different heating

rates.

测量产物的 TGA 和 DSC 曲线, 研究纳米纤维前体的热分解特性, 如图 2(a)

- (d) 所示。在 200-330℃温度范围内的第一次质量损失是由于前体中的水和有 机化合物的蒸发。根据文献报道, PVP 是通常在 350°到 470℃之间分解^[28,41],因 此在 330-500℃温度范围内的质量损失可能是由于 PVP 的分解。在 500-575℃温 度范围内的最终质量损失归因于 WO₃ 的完全结晶。随着升温速率的增加,相应 的三个放热峰逐渐变大,反应强度增大,表明升温速率越大,有机组分的分解越 快,WO₃ 的结晶越快。

图 2: PVP/W 前驱体复合纳米纤维在不同升温速率下的 TGA 和 DSC 曲线: (a) 1℃/min,
 (b) 5℃/min, (C) 10℃/min, (d) 15℃/min

Fig. 2. TGA and DSC curves of the PVP/W precursor composite nanofibers at different heating rates: (a) 1 °C/min, (b) 5 °C/min, (c) 10 °C/min, (d) 15 °C/min.

我们用扫描电镜对所有 WO₃ 的形貌和结构进行了表征。图 3(a)、(b)和(c)分 别为 WO₃-1、WO₃-5 和 WO₃-10 纳米纤维的 SEM 图像。这些 WO₃ 样品具有长而 连续的一维纤维状形貌。与 WO₃-1 和 WO₃-5 纳米纤维相比, WO₃-10 纳米纤维 的孔隙密度最高[图 3(c)],这主要是由于前驱体纳米纤维在较高的加热速率 10 C° /min 下,有机物组分快速分解所致[图 2]。充分的煅烧温度和较大的温度梯度会 实现纤维的多孔结构,直到去除所有的有机成分。这些在 WO₃-10 纳米纤维中互 连的孔隙意味着测试气体能够有效快速地渗透到多孔传感层中,这无疑有利于提 高气敏性能。需要指出的是,WO₃-15样品并没有很好地保持原来的一维纳米纤维结构[图 3 (d)]。WO₃-10样品的元素扫描结果表明,W和O元素均匀分布在纳米纤维WO₃中[如图 3 (e) - (g)]。

图 3: 多孔 WO₃纳米纤维的 SEM 图像: (a) WO₃-1, (b) WO₃-5, (c) WO₃-10, (d) WO₃-15; (g) SEM 图像 (f) W 和 (g) O 元素的 SEM 图像和相应的 EDS 映射 **Fig. 3.** SEM images of porous WO₃ nanofibers: (a) WO₃-1, (b) WO₃-5, (c) WO₃-10, and (d) WO₃-15; (g) SEM image and the corresponding EDS mappings of (f) W and (g) O elements of

WO₃-10 nanofibers.

接着我们采用透射电镜结合高分辨率透射电镜(HRTEM)进一步研究 WO₃纳米纤维的内部结构。WO₃-1、WO₃-5、WO₃-10纳米纤维的 TEM 图像分别如图 4(a)、(c)、(e)所示。

图 4: (a) WO₃-1、(c) WO₃-5 和 (e) WO₃-10 纳米纤维的 TEM 图像; (b) WO₃-1、 (d) WO₃-5 和 (f) WO₃-10 纳米纤维的 HRTEM 图像

Fig. 4. TEM images of (a) WO₃-1, (c) WO₃-5, and (e) WO₃-10 nanofibers, respectively; HRTEM images of (b) WO₃-1, (d) WO₃-5, and (f) WO₃-10 nanofibers, respectively.

所有的 WO₃ 纳米纤维都是由许多相互连接的 WO₃ 纳米粒子(NPs)聚集而成, 清楚地显示出粗糙的表面和多孔结构。特别是 WO₃-10 纳米纤维的 TEM 图像显 示其具有更加疏松的多孔结构。TEM 结果与实验结果吻合良好,与 SEM 结果一 致。图 4(b)、(d)和(f)显示了相应的 WO₃-1、WO₃-5 和 WO₃-10 纳米纤维的 HRTEM 图像。HRTEM 结果显示,晶格间距分别为 0.385 nm 和 0.263 nm,对应于单斜 WO₃ 的(002)和(202)晶面^[27,28]。很明显,WO₃-10 纳米纤维 HRTEM 图像中的红色 圆圈[图 4(f)]显示出,原生 WO₃ 纳米纤维之间有许多介孔。

我们通过 XPS 分析了所有 WO₃样品的化学组态。WO₃-10 纳米纤维的测量 光谱显示W和O特征峰(如图5 (a)]。WO₃-10 纳米纤维的高分辨W4f 谱图[图5 (b)) 显示了两个峰值 37.8 eV (W4f_{5/2})和 35.6 eV (W 4 f_{7/2}),确认 WO₃ 中 W 离子的价态 为"+6"价^[28]。图 5(c)–(f)分别显示 WO₃-1、WO₃-5、WO₃-10 和 WO₃-15 样品的 O 1s XPS 谱图。所有的 O 1s XPS 谱都可以高斯拟合成两个峰。峰值在 530.5 eV 处 的峰对应于 WO₃ 中的晶格氧(O_{Lattice})。另一个在 532.0 eV 的峰对应于于表面吸附 氧(O_{ads})^[27, 28]。如表 1 所述,WO₃-1、WO₃-5、WO₃-10 和 WO₃-15 纳米纤维中 O_{ads} 的相对比例分别为 20.2%、36.8%、43.5%、33.6%。这表明 WO₃-10 纳米纤 维具有最多的 O_{ads} 种类。

图 5: (a) WO₃-10 纳米纤维 W 4f 的测量光谱和(b)高分辨光谱; (c) WO₃-1、(d) WO₃-5、(d) WO₃-10 和(f) O 1s 区的高分辨 XPS 光谱

Fig. 5. (a) Survey spectrum and (b) high resolution spectra for W 4f of WO₃-10 nanofibers; high resolution XPS spectra for O 1 s region of (c) WO₃-1, (d) WO₃-5, (d) WO₃-10, and (f) WO₃-15.

样品	氧气种类	结 合 能 (eV)	相对百分比	表 面 积 (m ² g ⁻¹)	主 要 孔 径 (nm)
WO ₃ -1	O _L (W-O) O _C (化学吸 附)	530.5 532.0	79.8% 20.2%	10.71	11.17
WO3-5	O _L (W-O) O _C (化学吸 附)	530.5 532.0	63.2% 36.8%	14.39	17.49
WO ₃ -10	O _L (W-O) Oc(化学吸 附)	530.5 532.0	56.5% 43.5%	16.43	30.56
WO ₃ -15	O _L (W-O) Oc(化学吸 附)	530.5 532.0	66.4% 33.6%	12.83	18.50

表1: O 1s XPS 光谱、WO₃-1, WO₃-5, WO₃-10 和 WO₃-15 样品的比表面积和主要孔径的拟合结果

为了评估 WO₃样品的表面积和孔隙率,测量了四个样品的氮吸附-解吸等温线,如图 6 (a) - (d)所示。所有曲线均为 IV 型,表明所有样品均具有丰富的介孔。对于 WO₃-1, WO₃-5, WO₃-10 和 WO₃-15,表面积分别评估为 10.71、14.39、16.43 和 12.83m²g⁻¹。图 6 (a) - (d)的插图显示了各自的孔径分布曲线。 WO₃-1,WO₃-5,WO₃-10 和 WO₃-15 分别在约 11.17、17.49、30.56 和 18.50nm 处显示出主要孔径。如表 1 所示,WO₃-10 纳米纤维具有最大的孔径和最大的表面积。

Table 1. Fitting results of O 1s XPS spectra, surface areas and main pore sizes of WO₃-1, WO₃-5,WO₃-10, and WO₃-15 samples.

图 6: (a) WO₃-1, (b) WO₃-5, (c) WO₃-10 和 (d) WO₃-15 纳米纤维的氮吸收-吸收等温 线; 插图显示了相应的孔径分布曲线。

Fig. 6. Nitrogen absorption-desorption isotherms of (a) WO₃-1, (b) WO₃-5, (c) WO₃-10, and (d)

WO₃-15 nanofibers; the insets show the corresponding pore size distribution curves.

为了确认氧空位的存在,我们测量了所有 WO₃样品的 PL 光谱。如图 7 所示, 所有样品均在大约 479 nm 处出现相似的宽峰,这可归因于氧空位^[42,43]。峰的强 度随加热速率的增加而增加,这表明较大的加热速率使 WO₃具有更丰富的氧空 位^[42]。氧空位可以从加热过程中得出,在此过程中,局部低氧分压会导致氧空位 的形成,这是由于有机聚合物 PVP 迅速分解并释放出挥发性气体 (H₂O 和 CO_x) 所致。在先前的文献中也证实了这个反常的现象,即在随后的保温过程中氧空位 没有消除^[42,44]。

图7: 在不同加热速率下制备的WO₃样品的PL光谱

Figure 7. (a) PL spectra of WO₃ samples prepared at different heating rates.

我们在 30-150℃的温度范围内,针对 3 ppm NO₂测量了四种 WO₃ 传感器的 响应温度曲线。如图 8(a)所示,所有传感器的响应在很大程度上受到工作温度的影响。

图 8: (a)四种传感器在不同温度下对 3 ppm NO₂ 的响应温度曲线; (b)四种传感器在 90 ℃ 下测得的初始电阻 R_a

Figure 8. (a) Response-temperature curves of the four kinds of sensors to 3 ppm NO₂ at various temperatures; (b) initial resistances R_a of the four kinds of sensors measured at 90 °C.

开始时传感器响应随着操作的增加而增加,当温度达到 90℃时响应达到最大,然后随着工作温度的进一步升高而降低。与 WO₃-1(S=28.5), WO₃-5(S=53.6)

和 WO₃-15(S=38.5)相比, WO₃-10 纳米纤维对 3 ppm NO₂ 的响应最高(S=101.3)。 所有 WO₃ 传感器都在 90℃下对 NO₂ 响应最大,这可以归因于 NO₂ 分子的动态吸 附-解吸和在此温度下气敏反应的能量需求之间的平衡[28]。因此,选择 90℃作 为最佳工作温度。我们还测量了基于所有 WO₃样品的传感器的电阻(R_a)。图 8 (b)显示了在 90℃下, R_a与样品加热速率的关系。由 WO₃-1, WO₃-5, WO₃-10 和 WO₃-15 样品构成的传感器的电阻分别为 10.38、12.91、17.75 和 34.36 kΩ。

因此,WO₃样品的 R_a随加热速率的增加而增加。为进一步研究 WO₃纳米纤维的气敏性能,在90℃下对各种 NO₂浓度(100 ppb-3ppm)的动态气敏特性进行了评估,见图 9 (a) - (d)。

图 9: 基于四种样品的传感器在 90℃ 下对各个 NO₂浓度的响应-时间曲线: (a) WO₃-1,
(b) WO₃-5, (c) WO₃-10 和 (d) WO₃-15 纳米纤维; 插图显示了四种传感器在 NO₂浓度 分别为 100 ppb, 200 ppb 和 500 ppb 时的相应放大曲线。

Fig. 9. Response–time curves of the sensors based on the four kinds of samples to various NO₂ concentrations at 90 °C: (a) WO₃-1, (b) WO₃-5, (c) WO₃-10, and (d) WO₃-15 nanofibers; the insets show the corresponding enlarged curves of the four kinds of sensors at NO₂ concentrations of 100 ppb, 200 ppb, and 500 ppb.

当暴露于 NO₂ 中时, 传感器的响应增加, 并且再次暴露于空气后, 传感器的响应恢复到其原始状态。显然, 在所有测量浓度下, WO₃-10 纳米纤维对 NO₂的响应均最高。具体而言, WO₃-10 纳米纤维在 100 ppb, 200 ppb, 500 ppb, 1 ppm, 2 ppm 和 3 ppm NO₂ 的响应分别约为 1.8、2.1、4.0、4.5、54.5 和 101.3。图 9 (a) - (d)的插图显示了在 100 ppb, 200 ppb 和 500 ppb 的 NO₂浓度下放大的动态传感曲线。在 100 ppb NO₂下, 由 WO₃-1, WO₃-5, WO₃-10 和 WO₃-15 样品构建的传感器的响应分别为 1.2、1.5、1.8 和 1.4。

图 10(a)显示了所有 WO₃ 传感器在 90°C 下对 3 ppm NO₂ 的响应和恢复曲 线。从中,我们可以评估所有传感器的响应和恢复时间。

图 10: (a)四种传感器在 90℃下对 3ppm NO₂ 的响应-恢复曲线; (b)所有传感器对 NO₂ 的相应 响应和恢复时间

Fig. 10. (a) Response–recovery curves of the four kinds of sensors to 3 ppm NO₂ at 90 °C; (b) the corresponding response and recovery times of all sensors to NO₂.

如图 10(b)所示,四种 WO₃ 传感器的响应时间分别被确定为 241 s、198 s、 125 s 和 230 s,而恢复时间被确定为 687 s、648 s、231 s 和 589 s。分别对应于 WO₃-1,WO₃-5,WO₃-10 和 WO₃-15 传感器。显然,WO₃-10 纳米纤维有所有 WO₃样品中最短的响应时间(125 s)和最短的恢复时间(231 s)。该结果表明, 具有较大孔尺寸和较高孔密度的介孔纳米纤维促进了气体在整个气敏活性层上 更快地扩散,从而导致相对更快的 NO₂吸附/解吸速率。还应注意的是,四个传 感器的恢复时间相对较长,这与先前报告的结果一致^[45,46]。根据 Langmuir 吸附 模型,恢复时间(τ_{rec})可用以下公式表示^[47]:

$$\tau_{rec} = \frac{1}{k_{rec}} \tag{2}$$

$$k_{rec} = k_{rec}^{0} \exp \left(\frac{-E_{rec}}{k_B T}\right)$$
(3)

式中, k_{rec} 为恢复系数; k⁰rec 为恢复常数; k_B 为玻尔兹曼常数; E_{rec} 为解吸活 化能, T 为温度。根据上面的方程形式, 传感器的恢复时间相对较长的主要原因 是 WO₃ 纳米纤维表面的 NO₂ 解吸活化能较高和操作温度低(90℃)^[47]。在一定温 度下,可以通过对 WO₃ 纳米纤维的贵金属改性来降低 E_{rec}, 从而进一步降低 _{Trec}^[47,48]。

为了研究 WO₃-10 纳米纤维的选择性,我们在 90℃下测量了其对 NO₂ 和各种干扰气体的响应[Fig. 11(a)]。WO₃-10 纳米纤维对 NO₂ (S=101.3-3 ppm)表现出 优异的响应。然而,WO₃-10 纳米纤维对各种干扰气体包括氨气(NH₃),甲醇 (CH₃OH)和丙酮(CH₃COCH₃)响应很低(S<1.2-100 ppm)。WO₃-10 纳米纤维对 NO₂ 的响应明显高于对其他干扰气体的响应,这表明它具有良好的 NO₂选择性。

我们进一步研究了 WO3 传感器优异的 NO2 选择性的原因。首先,根据公式(1)

$$E_{ads} = E_{WO_3 + gas} - E_{WO_3} - E_{gas}$$

计算 NO₂、NH₃、CH₃OH 和 CH₃COCH₃ 在 WO₃的(001)面上的吸附能。图 11(c)-(f)显示了上述四种气体最稳定的吸附结构。计算得到 NO₂、NH₃、CH₃OH 和 CH₃COCH₃ 在 WO₃(001)晶面上的吸附能分别为-2.3300 eV、-0.8800 eV、-0.2800 eV 和 0.0158 eV[图 11(b)]。负吸附能表现为放热反应和自发吸收。NO₂ 的吸附能 远低于其他气体,表明 WO₃(001)面对 NO₂ 的吸附能力远强于对其他气体的吸附 能力^[8]。其次,不同的气体需要不同的能量来实现全气敏反应^[28,49]。NO₂由于具 有较强的氧化作用^[20],可以在室温/低温下捕获电子并产生气敏反应,而其他气 体只有在较高的温度下才能产生完整的气敏反应^[28,32,50]。在本实验中,NH₃、 CH₃OH 和 CH₃COCH₃ 的最优工作温度分别为 225℃、350℃和 375℃(图 S2)。因 此,这些干扰气体传感反应并不完全由于能量不足进行^[50],自测试温度(90℃)远低 于最优操作对这些干扰气体温度。因此,NO₂对其他气体优异的选择性主要归因 于两个方面:1)WO₃ 对 NO₂较强的吸附能力; 2) 90℃时 NO₂ 分子与吸附氧之间的 传感反应更为充分。

图 11: (a) WO₃-10 纳米纤维在 90℃对 NO₂和其他干扰气体的响应; (b) NO₂, NH₃, CH₃OH 和 CH₃OHCH₃ 在 WO₃{001}晶面上的吸附能; WO₃{001}晶面上(c) NO₂、(d) NH₃、
 (e) CH₃OH 和 (f) CH₃OHCH₃ 的吸附原子结构

Fig. 11. (a) Responses of WO₃-10 nanofibers towards NO₂ and other interfering gases at 90 °C; (b) adsorption energies of NO₂, NH₃, CH₃OH, and CH₃OHCH₃ on the WO₃ {001} polar surface; adsorption atomic structures of (c) NO₂, (d) NH₃, (e) CH₃OH, and (f) CH₃OHCH₃ on the surface of WO₃ {001} polar surface.

图 S2: WO3-10 纳米纤维对不同气体的响应-温度曲线

Fig. S2. Response-temperature curves of WO₃-10 nanofibers towards various test gases.

在 90℃、3 ppm NO₂下对 WO₃-10 纳米纤维的传感稳定性进行了研究,如图 12(a)所示。在 15 天内,响应几乎没有变化,表明 WO₃-10 纳米纤维对 NO₂检测 具有良好的稳定性。还研究了湿度对 WO₃-10 纳米纤维传感器传感性能的影响,如图 12(b)所示。随着湿度从 45%增加到 90%,传感器对 NO₂ 的响应明显降低。在湿度为 45%、60%、75%和 90%时,WO₃-10 纳米纤维的响应分别为 101.3、58.2、 31.8 和 16.5。感应响应的减少是由于以下原因:一方面,随着湿度的增加,更多 的水分子会吸附在 WO₃ 纳米纤维表面,导致 NO₂分子的吸附减少;另一方面, 被吸附的水分子会优先与吸附氧相互作用,从而导致吸附氧的减少^[51-53]。因此, NO₂分子和氧的吸附减少是导致高湿度条件下 NO₂反应减少的原因。

图 12: (a) WO₃-10 纳米纤维 15 天在 90℃对 3ppm NO₂ 的长期稳定性 (b) 在 90℃不 同相对湿度下 WO3-10 纳米纤维对 3ppm NO2 的响应恢复曲线

Fig. 12. (a) Long-term stability of the WO₃-10 nanofifibers toward 3 ppm NO₂ at 90 °C for 15 days; (b) Responseerecovery curves toward 3 ppm NO₂ of the WO₃-10 nanofifibers at 90 °C under various RH.

将本研究与以往报道的NO₂响应、操作温度、气敏材料制备方法等进行对比, 见表2。与大多数报道的NO₂传感器相比^[16,22-24,54],本研究中WO₃-10纳米纤维构 建的传感器即使在相对较低的温度下也表现出较高的NO₂响应。Au-WO₃微球^[15] 的工作温度较低,为50℃,但比NO₂的响应要低得多。因此,静电纺丝法制备的 WO₃-10纳米纤维仍然是一种很有前途的低温敏感检测NO₂的传感材料。

传感材料	NO ₂ (ppm)	温度(℃)	响应	方法	来源
WO3纳米板	5	100	10	水热法	[16]
WO3纳米棒	2	250	27	磁控溅射法	[23]
WO3纳米束	1	110	2.06	水热法	[54]
WO3-rGO 复合 纳米结构	10	90	4.3	水热法	[24]
Au-WO3 微球	5	50	15.6	水热法	[15]
Fe-WO₃空心纳 米球	1	120	4.7	水热法	[22]
WO3纳米纤维	3	90	101.3	静电纺丝	本工作

表 2: 这项工作和以前已报道的工作之间的二氧化氮传感性能比较

Table 2. Comparison of NO₂ sensing properties between this work and previous reports.

4 气敏机理

对于n型气敏材料,气敏机理与气体分子的吸附和解吸反应有关。当WO₃气体传感器置于空气中时,氧分子吸附在WO₃表面,在90°C时电离成氧离子(O₂-),^[20,49]如方程式(4)和(5)所述。

$$O_{2(gas)} \to O_{2(ads)} \tag{4}$$

$$O_{2(ads)} + e^{-} = O_{2(ads)}^{-} \tag{5}$$

在NO₂气体中,由于NO₂分子的强吸电子特性,吸附的NO₂分子将占据WO₃ 导带中更多的位置[方程(6)]。^[14]NO₂ 也将如方程(7)和 O₂ 离子相互作用。 ^[55]因此,在上述两个过程中会消耗大量的WO₃导带内的电子,导致WO₃传感器的 电阻明显增加。

$$NO_{2(gas)} + e^{-} \rightarrow NO_{2(ads)}^{-}$$
(6)

$$NO_{2(gas)} + O_{2(ads)}^{-} + 2e^{-} \rightarrow NO_{2(ads)}^{-} + 2O_{(ads)}^{-}$$
(7)

在我们的工作中,WO3-10纳米纤维表现出最好的NO2气敏性能,包括最高的 响应和最短的响应/恢复时间,这可以归因于以下因素。首先,与WO3-1、WO3-5 和WO3-15相比,WO3-10纳米纤维具有独特的介孔结构,比表面积最大,孔径最 大,孔密度最高。高比表面积为气体提供了很多的吸附场所,根据方程式(7) 这会产生更多的化学吸附活性离子。因此,会发生更剧烈的气敏反应[方程式

(7)]。为了进一步证明表面积不是WO3-10纳米纤维对NO2响应最高的唯一因素, 对所有WO3的传感响应相应的表面积进行了归一化。在3ppm NO2条件下,归一 化的WO3-10纳米纤维传感响应仍然比WO3-1纳米纤维高了2.6倍。因此,表面积 不是影响气体传感响应的唯一因素。传感活动应进一步与孔隙率和氧空位联系起 来。在介孔的情况下,Knudsen 扩散系数(D_k)可由以下方程给出:^[25,26]

$$D_{\rm k} = \frac{4r}{3} \sqrt{\frac{2RT}{\pi M}} \tag{8}$$

其中R为气体常数,T为温度,r为平均孔径,M为分子质量。在我们的工作中,WO₃-10纳米纤维的最高孔密度和最大孔径允许NO₂分子迅速扩散并渗透到多孔 传感层中,从而使气敏反应最大化[方程式(6)、(7)]。对于同一试验气体, 在一定的工作温度下,WO₃-10与其它WO₃的扩散系数比用下列公式计算:

$$\frac{D_{k,W0_{3}-10}}{D_{k,W0_{3}-i}} = \frac{\int n_{r,W0_{3}-10} dr}{\int n_{r,W0_{3}-i} dr}$$
(9)

其中i=1,5或15,n是介孔隙的数量。^[56]将 $\frac{dV}{(d(\log D))}$ 作为n,可以通过软件(origin 8.0) 集成图5(a) - (d) 插图中曲线和x轴之间的区域。因此通过 $\frac{D_{k,WO_3-10}}{D_{k,WO_3-1}}$ 、 $\frac{D_{k,WO_3-10}}{D_{k,WO_3-5}}$ 、 和 ^{*D*_{k,W03-10}} 分别计算为1.52、1.42和1.20。结果表明,WO₃-10中的气体扩散系数 至少是其它WO₃样品的1.2倍。因此,对于具有较高气体扩散系数的WO₃-10纳米 纤维,可以获得更短的响应/恢复时间。

其次,氧空位也是影响NO2气敏性能的主要因素。一方面,氧空位是WO3中的一种供体缺陷,^[57]氧分子可以从WO3纳米纤维的氧空位中捕获电子,从而通过下面的方程式(10)形成更多的O₂^{:[58]}

$$O_{2(gas)} + V_o \rightarrow O_{2(ads)}^- + V_o^{\bullet}$$
⁽¹⁰⁾

其中V_o和V_o分别为氧空位和正电性的氧空位。这意味着WO₃纳米纤维的氧空 位越多,O₂比例越高。与WO₃-1和WO₃-5纳米纤维相比,WO₃-10纳米纤维具有 相对较高的氧空位浓度(图7),因此具有较高的O₂吸收能力[图5(c)-(e)]。 较高的O₂吸收能力将通过方程(7)消耗更多的电子,从而导致WO₃-10纳米纤维 的电阻变化和较高的NO₂传感响应。^[59]另一方面,根据先前的密度泛函理论计算, 氧空位被证明是NO₂的活性吸收位点。因此,氧空位可以促进NO₂和O₂ 的吸附, 有助于提高WO₃-10 纳米纤维的气敏性能[方程(6)和(7)]。

值得一提的是,在所有WO3样品中,WO3-15纳米纤维的氧空位浓度最高。 然而,WO3-10纳米纤维对NO2的传感性能最好。显然,氧空位浓度与WO3传感器 的传感响应不是简单的线性关系。WO3-15不具有良好的一维类纤维结构,而 WO3-10具有良好的类纤维结构,介孔密度最高,比表面积最大。高孔隙率、高 氧空位浓度和大表面积的协同效应使WO3-10纳米纤维对NO2的传感性能最佳。

5 总结

综上所述,本文采用一种简单、多用途的静电纺丝技术,结合不同的加热速

率,制备了具有可调孔隙率和氧空位的一维介孔WO₃纳米纤维。通过调节加热速 率,可以很好地调节孔隙率和氧空位以及表面积。结果表明,WO₃-10纳米纤维 具有最大的孔隙率和最大的比表面积,而WO₃-15样品具有最大的氧空位浓度。 以升温速率为参数可以调节WO₃的低温NO₂气敏性能。WO₃-10纳米纤维表现出最 好的传感性能,表现出最高的NO₂响应(*R*_g/*R*_a =101.3-3 ppm)、最短的响应时间 (125s)和恢复时间(231s),以及在90℃下优异的NO₂选择性。这些优异的传 感性能可以归因于WO₃-10纳米纤维独特的多孔结构、高的氧空位浓度和高比表 面积,它们为表面的O₂和NO₂气体分子提供了较高的气体扩散系数和较强的吸收 能力。我们的工作为氧化物纳米纤维的孔隙率和氧空位的设计提供了一个有吸引 力的策略,合成的氧化物纳米纤维可以在低温下快速、灵敏地检测NO₂。

参考文献:

[1]A.J. Yang, D.W. Wang, X.H. Wang, D.Z. Zhang, N. Koratkar, M.Z. Rong, Recent advances in phosphorene as a sensing material, Nano Today 20 (2018) 13-32.

[2] P. Bi, X.W. Liu, Y. Yang, Z.Y. Wang, J. Shi, G.M. Liu, F.F. Kong, B.P. Zhu, R. Xiong, Silver-nanoparticle-modifified polymide for multiple artifificial-skin sensing application, Adv. Mater. Technol. 4 (2019), 1900426.

[3] Y. Yang, B.P. Zhu, D. Yin, J.H. Wei, Z.Y. Wang, R. Xiong, J. Shi, Z.Y. Liu, Q.Q. Lei, Flexible self-healing nano composites for recoverable motion sensor, Nanomater. Energy 17 (2015) 1-9.

[4]J.K. Choi, I.S. Hwang, S.J. Kim, J.S. Park, S.S. Park, U. Jeong, Y.C. Kang, J.H. Lee, Design of selective gas sensors using electrospun Pd-doped SnO₂ hollow nanofifibers, Sens. Actuators, B 150 (2010) 191-199.

[5]R. Malik, V.K. Tomer, Y.K. Mishra, L. Lin, Functional gas sensing nanomaterials: a panoramic view, Appl. Phys. Rev. 7 (2020), 021301.

[6] V.K. Tomer, K. Singh, H. Kaur, M. Shorie, P. Sabherwal, Rapid acetone detection using indium loaded WO₃/SnO₂ nanohybrid sensor, Sens. Actuators, B 253 (2017) 703-713.

[7] Q. Zhou, L. Xu, A. Umar, W. Chen, R. Kumar, Pt nanoparticles decorated SnO₂ nanoneedles for effificient CO gas sensing applications, Sens. Actuators, B 256 (2018) 656e664.

[8] C. Liu, H.B. Lu, J.N. Zhang, J.Z. Gao, G.Q. Zhu, Z.B. Yang, F. Yin, C.L. Wang, Crystal facet-dependent p-type and n-type sensing responses of TiO₂ nanocrystals, Sens. Actuators, B 263 (2018) 557-567.

[9] C. Liu, H.B. Lu, J.N. Zhang, Z.B. Yang, G.Q. Zhu, F. Yin, J.Z. Gao, C.J. Chen, X. Xin, Abnormal p-type sensing response of TiO₂ nanosheets with exposed {001} facets, J. Alloys Compd. 705 (2017) 112-117.

[10] J.N. Zhang, H. Lu, L.Z. Zhang, D.Y. Leng, Y.Y. Zhang, W. Wang, Y. Gao, H.B. Lu, J.Z. Gao, G.Q. Zhu, Z.B. Yang, C.L. Wang, Metaleorganic framework-derived ZnO hollow nanocages functionalized with nanoscale Ag catalysts for enhanced ethanol sensing properties, Sens. Actuators, B 291 (2019) 458-469.

[11] A.N.A. Anasthasiya, K.R. Kishore, P.K. Rai, B.G. Jeyaprakash, Highly sensitive graphene oxide functionalized ZnO nanowires for ammonia vapour detection at ambient temperature, Sens. Actuators, B 255 (2018) 1064-1071.

[12] S.M. Wang, J. Cao, W. Cui, L.L. Fan, X.F. Li, D.J. Li, Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In₂O₃ hierarchical architectures, Sens. Actuators, B 255 (2018) 159-165. [13] Y.Y. Cao, Y. He, X.X. Zou, G.D. Li, Tungsten oxide clusters decorated ultrathin In₂O₃ nanosheets for selective detecting formaldehyde, Sens. Actuators, B 252 (2017) 232-238.

[14] W. Liu, L. Xu, K. Sheng, C. Chen, X. Zhou, B. Dong, X. Bai, S. Zhang, G. Lu, H. Song, APTES-functionalized thin-walled porous WO₃ nanotubes for highly selective sensing of NO₂ in a polluted environment, J. Mater. Chem. A 6 (2018) 10976-10989.

[15] Y. Shen, H. Bi, T. Li, X. Zhong, X. Chen, A. Fan, D. Wei, Low-temperature and highly enhanced NO₂ sensing performance of Au-functionalized WO₃ microspheres with a hierarchical nanostructure, Appl. Surf. Sci. 434 (2018) 922-931.

[16] S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim,
P.S. Patil, Sensitive and selective NO₂ gas sensor based on WO₃ nanoplates, Sens. Actuators, B
240 (2017) 426-433.

[17] R. Malik, V.K. Tomer, T. Dankwort, Y.K. Mishra, L. Kienle, Cubic mesoporous Pd-WO₃ loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors, J. Mater. Chem. A 6 (2018) 10718-10730.

[18] K. Chen, H. Lu, G. Li, J. Zhang, Y. Tian, Y. Gao, Q. Guo, H. Lu, J. Gao, Surface functionalization of porous In₂O₃ nanofifibers with Zn nanoparticles for enhanced low-temperature NO₂ sensing properties, Sens. Actuators, B 308 (2020), 127716.

[19] C. Yan, H. Lu, J. Gao, Y. Zhang, Q. Guo, H. Ding, Y. Wang, F. Wei, G. Zhu, Z. Yang, C. Wang, Improved NO2 sensing properties at low temperature using reduced graphene oxide nanosheet-In₂O₃ heterojunction nanofifibers, J. Alloys Compd. 741 (2018) 908-917.

[20] L. Zhang, J. Zhang, Y. Huang, H. Xu, X. Zhang, H. Lu, K. Xu, P.K. Chu, F. Ma, Stability and sensing enhancement by nanocubic CeO₂ with {100} polar facets on graphene for NO₂ at room temperature, ACS Appl. Mater. Interfaces 12 (2020) 4722-4731.

[21] Y. Wu, N. Joshi, S. Zhao, H. Long, L. Zhou, G. Ma, B. Peng, O.N.O. Jr, A. Zettl, L. Lin, NO₂ gas sensors based on CVD tungsten diselenide monolayer, Appl. Surf. Sci. 529 (2020), 147110.

[22] Z. Zhang, M. haq, Z. Wen, Z. Ye, L. Zhu, Ultrasensitive ppb-level NO₂ gas sensor based on

WO₃ hollow nanosphers doped with Fe, Appl. Surf. Sci. 434 (2018) 891-897.

[23] M. Horprathum, K. Limwichean, A. Wisitsoraat, P. Eiamchai, K. Aiempanakit, P.

Limnonthakul, N. Nuntawong, V. Pattantsetakul, A. Tuantranont, P. Chindaudom, NO₂-sensing properties of WO₃ nanorods prepared by glancing angle DC magnetron sputtering, Sens. Actuators, B 176 (2013) 685-691.

[24] Q. Hao, T. Liu, J. Liu, Q. Liu, X. Jing, H. Zhang, G. Huang, J. Wang, Controllable synthesis and enhanced gas sensing properties of a single-crystalline WO₃-rGO porous nanocomposite, RSC Adv. 7 (2017) 14192-14199.

[25] G. Korotcenkov, B.K. Cho, Metal oxide composites in conductometric gas sensors: achievements and challenges, Sens. Actuators, B 244 (2017) 182-210.

[26] A. Ghosh, S.B. Majumder, Modeling the sensing characteristics of chemiresistive thin fifilm semiconducting gas sensors, Phys. Chem. Chem. Phys. 19 (2017) 23431-23443.

[27] J.N. Zhang, H.B. Lu, C. Yan, Z.B. Yang, G.Q. Zhu, J.Z. Gao, F. Yin, C.L. Wang, Fabrication of conductive graphene oxide-WO₃ composite nanofifibers by electrospinning and their enhanced acetone gas sensing properties, Sens. Actuators, B 264 (2018) 128-138.

[28] J.N. Zhang, H. Lu, H.B. Lu, G. Li, J.Z. Gao, Z.B. Yang, Y.H. Tian, M. Zhang, C.L. Wang, Z. He, Porous bimetallic Mo-W oxide nanofifibers fabricated byelectrospinning with enhanced acetone sensing performances, J. Alloys Compd. 779 (2019) 531-542.

[29] Y.J. Jeong, W.T. Koo, J.S. Jang, D.H. Kim, M.H. Kim, I.D. Kim, Nanoscale PtO₂ catalysts-loaded SnO₂ multichannel nanofifibers toward highly sensitive acetone sensor, ACS Appl. Mater. Interfaces 10 (2018) 2016-2025.

[30] J.N. Zhang, H.B. Lu, C. Liu, C.J. Chen, X. Xin, Porous NiO-WO₃ heterojunction nanofifibers fabricated by electrospinning with enhanced gas sensing properties, RSC Adv. 7 (2017) 40499-40509.

[31] S. Choi, C. Choi, S. Kim, H. Cho, M. Hakim, S. Jeon, I.D. Kim, Highly effificient electronic sensitization of non-oxidized graphene flflakes on controlled poreloaded WO₃ nanofifibers for selective detection of H₂S molecules, Sci. Rep. 5 (2015) 8067.

[32] D. Kim, J. Jang, W. Koo, S. Choi, S. Kim, I. Kim, Hierarchically interconnected porosity control of catalyst-loaded WO₃ nanofifiber scaffold: superior acetone sensing layers for exhaled breath analysis, Sens. Actuators, B 259 (2018) 616-625.

[33] S. Peng, Z. Wang, R. Liu, J. Bi, J. Wu, Controlled oxygen vacancies of ZnFe₂O₄ with superior gas sensing properties prepared via a facile one-step selfcatalyzed treatment, Sens. Actuators, B 288 (2019) 649-655.

[34] W. Kim, M. Choi, K. Yong, Generation of oxygen vacancies in ZnO nanorods/ fifilms and their effects on gas sensing properties, Sens. Actuators, B 209 (2015) 989-996.

[35] L. Zhang, Q. Fang, Y. Huang, K. Xu, P.K. Chu, F. Ma, Oxygen vacancy enhanced gas-sensing performance of CeO₂/graphene heterostructure at room temperature, Anal. Chem. 90 (2018) 9821-9829.

[36] G. Wang, Y. Ling, Yat Li, Oxygen-defificient metal oxide nanostructures for photoelectronchemical water oxidation and other applications, Nanoscale 4 (2012) 6682e6691.

[37] G. Kresse, J. Furthmüller, Effificient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

[38] G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys.

Rev. B 48 (1993) 13115-13118.

[39] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758-1775.

[40] T. Xie, X.D. Wang, M. Yao, X.S. Liu, Y.G. Chen, First-principle study of CO adsorption and oxidation on Sm-doped CeO₂(111) surface, RSC Adv. 6 (2016) 20349-20356.

[41] T. Newsome, S. Olesik, Electrospinning silica/polyvinylpyrrolidone composite nanofifibers, J. Appl. Polym. Sci. 131 (2014), 40966.

[42] H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu, J. Fang, C. Tang, X. Yan, H. Cai, Y. Gu, S.J. Pennycook, J. Tao, D. Zhao, ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing, Adv. Mater. 31 (2019), 1807161.

[43] K. Thiyagarajan, M. Muralidharan, K. Sivakumar, Defects induced magnetism in WO₃ and reduced graphene oxide-WO₃ nanocomposites, J. Supercond. Nov. Magnetism 31 (2018) 117-125.
[44] L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Plasma-engraved Co₃O₄ nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction, Angew. Chem. Int. Ed. 55 (2016) 5277-5281.

[45] X. Qiang, M. Hu, B. Zhao, Y. Qin, R. Yang, L. Zhou, Y. Qin, Effect of the functionalization of porous silicon/WO₃ nanorods with Pd nanoparticles and their enhanced NO₂-sensing performance at room temperature, Materials 11 (2018) 764.

[46] A. Sharma, M. Tomar, V. Gupt, WO₃ nanoclusters-SnO₂ fifilm gas sensor heterostructure with enhanced response for NO₂, Sens. Actuators, B 176 (2013) 675-684.

[47] X. Geng, P. Lu, C. Zhang, D. Lahem, M.G. Olivier, M. Debliquy, Room-temperature NO₂ gas sensors based on rGO@ZnO_{1-x} composites: experiments and molecular dynamics simulation, Sens. Actuators, B 282 (2019) 690-702.

[48] H. Liu, Y. Xu, X. Zhang, W. Zhao, A. Ming, F. Wei, Enhanced NO2 sensing properties of Pt/WO₃ fifilms grown by glancing angle deposition, Ceram. Int. 46 (2020) 21388-21394.

[49] Z. Wang, A. Sackmann, S. Gao, U. Weimar, G. Lu, S. Liu, T. Zhang, N. Barsan, Study on highly selective sensing behavior of ppb-level oxidizing gas sensors based on Zn₂SnO₄ nanoparticles immobilized on reduced graphene oxide under humidity conditions, Sens. Actuators, B 285 (2019) 590-600.

[50] J. Zhang, L. Zhang, D. Leng, F. Ma, Z. Zhang, Y. Zhang, W. Wang, Q. Liang, J. Gao, H. Lu, Nanoscale Pd catalysts decorated WO₃-SnO₂ heterojunction nanotubes for highly sensitive and selective acetone sensing, Sens. Actuators, B 306 (2020), 127575.

[51] Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms, Sens. Lett. 3 (2005) 274-295.

[52] J.W. Yoon, J.S. Kim, T.H. Kim, Y.J. Hong, Y.C. Kang, J.H. Lee, A new strategy for

humidity independent oxide chemiresistors: dynamic self-refreshing of In₂O₃ sensing surface assisted by layer-by-layer coated CeO₂ nanoclusters, Small 12 (2016) 4229-4240.

[53] D. Koziej, N. Barsan, U. Weimar, J. Szuber, K. Shimanoe, N. Yamazoe, Water-oxygen interplay on tin dioxide surface: implication on gas sensing, Chem. Phys. Lett. 410 (2005) 321-323.

[54] J.J. Qi, S. Gao, K. Chen, J. Yang, H.W. Zhao, L. Guo, S.H. Yang, Vertically aligned, double-sided, and self supported 3D WO₃ nanocolumn bundles for low temperature gas sensing, J. Mater. Chem. A 3 (2015) 18019-18026.

[55] T.T. Wang, J.Y. Hao, S.L. Zheng, Q. Sun, D. Zhang, Y. Wang, Highly sensitive and rapidly responding room-temperature NO₂ gas sensors based on WO₃ nanorods/sulfonated graphene nanocomposites, Nano Res 11 (2018) 791-803.

[56] M. Yao, P. Hu, N. Han, F. Ding, C. Yin, F. Yuan, J. Yang, Y. Chen, ZnO microwindbreak for enhanced gas diffusion, Sens. Actuators, B 186 (2013) 614-621.

[57] Z. Wang, D. Wang, J. Sun, Controlled synthesis of defect-rich ultrathin two-dimensional WO₃ nanosheets for NO₂ gas detection, Sens. Actuators, B 245 (2017) 828-834.

[58] S. Xu, J. Gao, L. Wang, K. Kan, Y. Xie, P. Shen, L. Li, K. Shi, Role of the heterojunctions in In_2O_3 -composite SnO₂ nanorod sensors and their remarkable gas-sensing performance for NO_x at room temperature, Nanoscale 7 (2015) 14643-14651.

[59] X. Han, X. Yin, Density functional theory study of the NO₂-sensing mechanism on a WO₃

(001) surface: the role of surface oxygen vacancies in the formation of NO and NO₃, Mol. Phys. 1114 (2016) 3546-3555.